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A shooting approximation to wavefunctions with harmonic 
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U K  

Received 16 February 1987, in final form 2 2  May 1987 

Abstract. States which in the Schrodinger representation, have harmonic amplitudes o r  
phases o r  both are  discussed. The variational problem for the quantum mechanical action 
functiooal reduces to the solution of classical equations of motion by shooting methods,  
when the variation is restricted to  wavefunctions whose phase satisfies the classical Hamil- 
ton-Jacobi equation. These wavefunctions have harmonic amplitude.  

1 .  Introduction to ‘harmonious’ and ‘coherent’ states 

Consider the quantum system for the potential V ( x )  which develops in time according 
to the Schrodinger equation 

(1.1) 

The symbol a denotes partial differentiation with respect to t throughout this paper 
and the components of the vector V are the derivatives with respect to the n variables 
x. The wavefunction solution 

2miha++ fi2v2+ = 2mV(x ,  t )+.  

$(x, t )  = a ( x ,  t )  exp(iS(x, t ) / h )  ( 1 . 2 )  

maa2+V - ( a 2 V S )  = O  ( 1 . 3 )  

may equivalently be determined by the continuity equation 

coupled with 

2 m d ~ + ( ~ ~ ) ~ + 2 m ~ -  h 2 ( V 2 a ) / a  = O  

which we will call the quantum Hamilton-Jacobi equation. 

V, = h 2 ( V ’ a ) / m a  ( 1 . 5 )  

we call the ‘quantum potential’ V,(x,  1 ) .  
Among the many states in which we may prepare the quantum system there may 

be a set which we will call ‘harmonious’ states whose time development +(x, t )  have 
the property that a ( x ,  t )  satisfies Laplace’s equation 

V 2 a  = 0 (1.6) 

and a set which we will call ‘cohesive’ states which have the property that S(x, t )  
satisfies Laplace’s equation 

v2s = 0. (1.7) 
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5572 F Riordan 

These sets of states may be considered dual to each other. There may also be self-dual 
states for certain potentials. 

Harmonious states thus have a probability density p ( x ,  t )  

p = a‘ (1.8) 

which has no lumps at any time t and their phases S ( x ,  t )  satisfy the classical Hamilton- 
Jacobi equation 

(1.9) 2 m d S  + (VS)? + 2 m  v = 0. 

For the case of the three-dimensional ( n  = 3) harmonic oscillator, for which 

V ( x ) = A  7 m w ‘ x .  - x (1.10) 

a 2 ( x ,  t )  = l /sin’(wt) (1.11) 

~ ( x ,  t ) = f m w [ ( x 2 + x : )  cos w t - 2 x . x , , ] / s i n  w t  (1.12) 

the propagator or kernel is such a ‘harmonious’ state with a ( x ,  t )  a function of t alone 

and 

satisfies the classical Hamilton-Jacobi equation. 
Cohesive states, on the other hand, have a probability density which remains 

unchanged as we move in time along any of the three-parameter family of paths x ( y ,  t ) ,  
which have the property that 

X’(Y, 1) =VS(x, o l x = x , y , i l  X(Y, 0) = y. (1.13) 

(Throughout this paper the prime ‘ denotes ordinary differentiation with respect to the 
argument t.) We will call such a path a ‘quantum path’. There is a different ‘quantum 
path’ for each value of the three parameters y contained in R’. Thus if the probability 
density starts with a lump, this lump moves along the quantum path x ( t )  without 
dissipating: 

maa’+VS.  Vu’= 0. (1.14) 

Since S ( x ,  t )  is not a solution of the classical Hamilton-Jacobi equation, x ( t )  is not a 
classical path (or ray). I f  it were, the state would be what is usually called a ‘coherent’ 
state, the state which most closely resembles a classical particle. The coherent states 
of the harmonic oscillator have 

S ( x ,  t ) = m x . x ’ ( t )  (1.15) 

where x ( t )  satisfies the harmonic oscillator equation of motion. Thus the ‘minimum 
uncertainty coherent’ states ( M U C S )  (Nieto 1983) are also ‘cohesive’ states for the 
harmonic oscillator and 

(1.16) 

The lump is Gaussian and moves along the classicul path x ( t )  without changing its 
shape. 

In § 2 we find exactly a family of ‘cohesive’ states for a class of systems whose 
classical equation of motion is of the form (Glauber 1966) 

(1.17) 

where f ( z ,  t j  is any function analytic in the complex variables t and continuous in t ,  
and families of ’harmonious’ and ‘cohesive’ states for the forced harmonic oscillator. 

a ( x ,  t )  = exp[- $ m w ( x  - x (  t ) )  ( x  - x( t ) ) /  h]. 

( w x (  t ) + i mx’ (  t ) 1’ =.f( w x (  t ) + imx’( t ), t ) 
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You will be unwilling to read this paper further unless the usefulness of these 
constructs is demonstrated. The simple harmonic oscillator has a three-parameter 
family of ‘harmonious’ states which together constitute the propagator or Green 
function from which the time development of all quantum mechanical wavefunctions 
of this system can be found exactly. The family of ‘cohesive’ states turns out to be 
the overcomplete set of MUCS.  The knowledge of their time dependence again leads 
(Nieto 1983) to the solution of all quantum mechanical problems of the harmonic 
oscillator system. Section 3 shows that the time development of a given initial quantum 
state is found if the dynamical system has sets of ‘harmonious’ or ‘cohesive’ states in 
the following three cases. 

(i) I f  the distribution, which is the limit of 

G k y ,  t )  = a ( x , y ,  0 exp(iS(x,y, t ) l h )  (1.18) 

as t approaches zero, gives $(x,O) when convoluted with some C” function. Here 
S ( x , y ,  t )  is a complete integral of the classical Hamilton-Jacobi equation (1.9) and 
a ( x ,  y ,  t )  satisfies the continuity equation (1.3) and Laplace’s equation (1.6). 

( i i )  I f  the class of functions S(x, 0) is sufficiently extensive that a superposition of 
$(x, 0) can represent the initial state. Here $(x, t )  is given by equation (1.2) with 
S(x, t )  satisfying the classical Hamilton-Jacobi equation (1.9) with initial value S(x, 0). 

( i i i )  I f  the initial state $(x, 0) is a linear superposition of MUCS. 

Such sets of states can only be found exactly for the harmonic oscillator but may 
be approximated by the methods of Q 6. 

In Q 4 we extend the class of potentials for which exact ‘harmonious’ states and 
‘cohesive’ states are found. There are potentials ( 5  5) for which self-dual states may 
be found, i.e. states which are both ‘harmonious’ and ‘cohesive’. For example, the 
plane-wave solution of Schrodinger’s equation (1 . l )  for a constant potential satisfies 
both equation (1.6) and equation (1.7). For the two-dimensional case considered in 
Q 5 we find potentials for which self-dual energy eigenstates exist, corresponding to 
each analytic function. Dual states are also found for a class of potentials in n 
dimensions. 

Energy eigenstates can be cohesive for a reduced class of potentials 

V ( x ) =  E - ~ ( v x F + v ~ ) ’ / ~ + ~ ’ ( v ’ ~ ) / ~  (1.19) 

where F ( x )  is any field and 

V2d = 0. ( 1.20) 
Finding the class of potentials which have harmonious energy eigenstates requires, 
however, the solution of a second-order partial differential equation which vitiates 
their usefulness in solving the Schrodinger equation (1.1 1. The dual energy eigenstates 
satisfy equations ( 1.6) and ( 1.7) and 

V S . V a = O  (1.21) 
so that, in two dimensions, a +iS is an analytic function of x + iy, independent of r. 
With this restriction the potential V ( x )  is given by 

v =  E - $ ( V S ) ? / m .  (1.22) 

It should be noted that harmonious states cannot be eigenstates of any operator 
corresponding to discrete eigenvalues. These require a 2 ( x ,  t )  to be integrable and 
therefore zero at large distances. But harmonic a ( x ,  t )  zero at large distances is zero 
everywhere. 
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Approximations to the ‘harmonious’ states are given in § 6 for the general potential 
V ( x ) .  This involves finding a ‘coherent set of natural motions’ x(y ,  t )  (Synge and 
Griffith 1970) for the particular potential which, for a given harmonic function a(x ,  t ) ,  
satisfy a shooting condition: 

a 2 ( x ( y ,  +a), + ~ ) J ( Y ,  +a) = a’ (x (y ,  --a), - m ) J ( y ,  --CO) ( 1.23) 

where J ( y ,  t )  is the Jacobian of x ( y ,  t ) .  This differs from the W K B  method (Morrette 
1950) which requires initial conditions on both the position and momentum of the 
natural motion x ( y ,  t ) .  A similar approximation to ‘harmonious’ eigenfunctions corre- 
sponding to the continuum of energy eigenvalues is found in Q 7. 

The approximation to ‘cohesive’ states for the so-called ‘harmonic potentials’ is 
similar to the MUCS method (Nieto 1983). 

2. Complete set of exact ‘harmonious’ and ‘cohesive’ states 

Consider the quantum systems (Glauber 1966) for which the equation of motion for 
the Heisenberg quantum operators x( t )  and p (  t )  can be written as 

b’( t )  = mwx‘(  t )  + ip‘( t )  =f( mwx( t )  + ip( t ) ,  t )  (2.1) 

where f(l; f )  depends on t and is an analytic function of the three complex variables 
z. This includes the harmonic oscillator as a special case. A MUCS 1 )  (Nieto 1983) 
by definition satisfies 

bl) = (mwx + ip)/)  = ( m w ( x )  + i(p))J) (2.2) 

where x and p are the coordinate and momentum operators in the Schrodinger 
representation. 

If we choose the time-independent Heisenberg state to be a M U C S  I )  the centroid 
of the Schrodinger wavefunction for this state follows the classical path 

m w ( x ( t ) ) ’ +  i (p( t ) ) ‘=f (mw(x( t ) )+  i(p(t)), t )  (2.3) 

since 

f ( m w x ( t )  + M I ) ,  [ ) I )  =f(mw(x( t ) )+ i (p( t ) ) ,  t)l). (2.4) 

The corresponding Schrodinger time-dependent state It)  is defined by 

(mwx+ip)jt)  = (mwx( t )+ip( t ) ) l )=  b ( t ) l )  (2.5) 

and 

10) =I) .  (2.6) 

It follows that 

( t / ( b ’  - (b ’ ) ) (b  - (b))lt) = ( ( b ’ ( t )  - ( b ’ ( O ) ) ( b ( t )  - ( b ( r j ) ) ) .  (2.7) 
The time derivative to all orders of the function on the right-hand side of this equation 
may be constructed from equation (2.1) and its Hermitian adjoint. Equation (2.5) 
shows that at t = 0 the function and all its derivatives are zero. Thus the function is 
identically zero so 

( t i (  b’ - (b’ ) ) (  b - ( b ) ) l t )  3 0. (2.8) 
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The Schwartz inequality tells us that this equation can only be satisfied if i t )  is an 
eigenstate of b = mwx + imp: 

bi t )=  (mwx+ip)lt)= (mw(x( t ) )+ i (p( t ) ) ) ( t ) .  (2.9) 

From this equation we can see that the Schrodinger wavefunction (x[ t )  satisfies the 
partial differential equation 

(2.10) h V ( x l t )  = ( m w ( x (  t ) )+ i (p(  t ) )  - m w x ) ( x i t )  

( x l t )  = exp[-+(mw(x(t))+ i(p( t ) )  - m u ) ‘ /  hmw].  (2.11) 

(a2((x(t)) ,  t ) ) ’ =  0 (2.12) 

which has the solution 

The continuity equation (1.3) which may be rewritten using equation (2.9) in the form 

is satisfied by the modulus 

a (x, t ) = exp{ [ - f ( m w ( x (  t )) - m o r ) *  + t ( p (  t ))*I/ hmw }. (2.13) 

of this wavefunction since its phase 

S(x, t ) /  h = 2(p( t ) )  . ( m w ( x (  t ) )  - m w x ) /  hmw (2.14) 

satisfies Laplace’s equation (1.6) and 

m ( x ( r ) ) ’ =  [VS(x, t ) I X 2 W , , > .  (2.15) 

We have used the fact that the operation of ip acting to the left on the eigenstates (xi 
of the operator x is just hV. 

Thus 9(x, t )  with amplitude and phase given by equations (2.13) and (2.14), 
respectively, is a ‘cohesive’ state of the dynamical system equation (2.1). 

A three-parameter family of ‘harmonious’ states for the forced harmonic oscillator 
with Lagrangian 

L = ~ m x ’ . x ’ - t m w ~ x . x + f ( l )  * x (2.16) 

can be found exactly using S(x, y ,  t )  the complete integral of the classical Hamilton- 
Jacobi equation (1.9) as the phase: 

S ( x , y ,  t ) s i n w t = ~ m u { ( x . x + y . y ) c o s w i  

- 1‘ I T  sin w ( t  - 7) f (7 )  -f(v) sin wv d 7  d a l m w  (2.17) 

and 

a ( x ,  y ,  t )  = sin-3’2 ut (2.18) 

A three-parameter family of cohesive states may be found for the same Lagrangian 
as the amplitude. 

(2.16) by simply substituting the classical paths 

mwx( t )  + ip( t )  = (mwX,+ ip,) eXp( - iwt )  - i f( T )  exp( -io( t - 7 ) )  dT (2.19) 5 ‘  
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of this Lagrangian for ( x ( y ,  1 ) )  and ( p ( y ,  t ) )  in equations (2.11), (2.13) and (2.14) which 
we will then distinguish by a prime. The modulus a(x,  t )  of equation (2.13‘) and the 
phase S(x, t )  of equation (2.14’) together satisfy the continuity equation (1.3). By 
virtue of the energy equation, S(x, t )  satisfies the classical Hamilton-Jacobi equation 
(1.9) which is equivalent to the quantum Hamilton-Jacobi equation (1.4) since a(x ,  t )  
satisfies Laplace’s equation (1.6). Thus a exp( iS /h )  satisfies the Schrodinger equation 
(1.1). 

A generalised ‘cohesive’ state is one for which 

v’S(X, t )  = 2 m ~ ’ ( r ) .  (2.20) 

+2md(x ,y ,  z, t ) l / h }  (2.21) 

$(x,y, z, t )  = e x p ( F ( t ) )  e x p { i [ m ~ ’ ( t ) ( a x ~ + p y ’ +  y z ’ ) / ( a  + p  + y )  

is such a state which is also ‘harmonious’ for the potential 

- V( x, y ,  z ,  t ) = mF”( a x 2  + py ’ + y z 2 ) /  ( a  + p + y ) + 2m4 

+2m[( F ’ ) ’ ( ax+Py+  y z ) / ( a  + p  + y )  +v41 (2.22) 

where is linear in x, y, z. The phase S(x,  y, z, r )  of $(x, y ,  z ,  t )  satisfies equation 
(2.20) and the classical Hamilton-Jacobi equation (1.9). The corresponding continuity 
equation for a (x ,  y, z, t )  is satisfied by exp( F (  t ) ) .  

3. Exact ‘classical’ evolution 

The time evolution of any state of a dynamical system which possesses ‘harmonious’ 
states ( §  2) may be found as follows by ‘classical’ means. 

( i )  Suppose the set of ‘harmonious’ states may be parametrised by the n parameters 
Y as 

(3.1) 

(3.2) 

where the derivatives V are with respect to x not y .  Then S ( x , y ,  t )  is a complete 
integral of the classical Hamilton-Jacobi equation (1.9). a(x , j ! ,  t )  is the harmonic 
solution (which by hypothesis exists) of ordinary differential equations 

(3.3) 

$ ( x , Y ,  t ) =  a ( x , y ,  t )  exp(iS(x,.v, r ) l h )  

V 2 a ( x ,  y ,  1 )  = 0 

2m[ln a ( x ( y ,  t ) , Y ,  ? ) I f =  -[V‘S(S, Y ,  t ) l x2x l , . , r i  

mx’(.v, 1) = [VS(x, Y ,  t ) l x z x ~ , , , l  

in terms of x(y, t )  given by 

(3.4) 

is also a solution of the Schrodinger equation (1.1) for this dynamical system, for any 
f ( y )  belonging to C ” .  Thus any initial state which may be represented as 
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wheref(y) belongs to C“, will have its time evolution given exactly by equation (3.6). 
Now 4(x,  y ,  0) will not necessarily be a function, as the limit of $(x, y ,  t )  as t approaches 
zero does not necessarily exist. Indeed for the forced harmonic oscillator equations 
(2.17) and (2.18) it clearly does not. However, $(x, y ,  0) need only be a distribution 
(it is the Dirac distribution called the 6 function for the harmonic oscillator) which 
has meaning when convoluted with test functions from C“ in equation (3.6). 

Only for the forced harmonic oscillator have we been able to find $(x, y, t )  exactly 
‘harmonious’ such that $(x, 0) may be any initial state. In  § 6 ‘harmonious’ states are 
approximated for general dynamical systems which boast such states. 

( i i )  Suppose that a set of ‘harmonious’ states 4(x,  t )  equation (1.2) exists for a 
dynamical system. Since a (x ,  t )  is harmonic, S(x, t )  is a solution of the classical 
Hamilton-Jacobi equation (1.9) 

S(X(Y, t ) ,  t )  = L(x(Y, T I ,  x’(y, 7 ) )  dT+ S b ,  0) (3 .8 )  

determined from S(x, 0) by the solution x(y, t )  of the ordinary differential equations 
of motion for the Lagrangian L(x, x’, t )  of the dynamical system. Then using this 
S(x, t )  we can determine a (x ,  t )  from a(x,  0) by the system of ordinary differential 
equations ( 3 . 3 ) ,  (3.4) and (3.5) equivalent to the continuity equation (1.3). Thus $(x, t )  
is derived from $(x,O) by solving ordinary differential equations alone. The time 
development of an initial state which is a linear superposition of the $(x, 0) will be 
the same linear superposition of the $(x, t ) .  

( i i i )  For a dynamical system which possesses a set of ‘cohesive’ states $(x, t )  given 
by equations (1.2) and (1.7), the time development of any initial state which is a linear 
superposition of $(x, 01, is the same linear superposition of $(x, t ) .  However, we can 
establish the (0ver)completeness of $(x, 0) (Moyal 1949) and the exact cohesiveness 
of $(x, t ) ,  i.e. S(x, t )  is harmonic in x for all t only in the special case of the harmonic 
oscillator. 

I‘ 

4. Potentials which have harmonious or cohesive states 

The following potential has a harmonious state 

V(x, t )  = -dS(x, ~ ) - $ ( v s ( x ,  t ) ) ’ / m  

where 

S(x, t )  = S( t )  * x +  l (  t ) (  p x)’+ n ( t ) ( y .  x)’+ b ( r ) / p  x (4.2) 

and p and y are constant orthogonal n vectors such that 

either p .  S ( r )  = 0 or b(  t )  = 0. 

The harmonious state is given by 

cL(x, t )  = a(x ,  t )  exp[iS(x, t ) / A l  
and 

(4.3) 

(4.4) 

U(X,  t )  = g ( t ) + a ( t )  x + k ( r ) (  p X ) I  ys x). (4.5) 
Equation (4.4) satisfies the Schrodinger equation ( 1 . 1 )  provided that a (x ,  t )  and S(x, t )  
satisfy the continuity equation (1.3), since a(x ,  t )  is harmonic and S(x, t )  satisfies the 
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classical Hamilton-Jacobi equation (1.9). The continuity equation implies that the 
functions g ( r ) ,  a( t )  and k ( t )  are determined by the following differential equations: 

L( t )  = exp -2p p I (  t )  dr /m ( 5 '  ) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

14.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

has an exact 'cohesive' state if S(x, t )  is harmonic in x and a(x, t )  is constructed in 
terms of an  arbitrary function g ( y )  as follows. 

Find the solutions x(y, t )  of the equations 

mx'(y, t )  = [VS(X, ~ ) 1 * 4 y , , 1  X(Y, 0) = y.  (4.17) 

Define a(x, t )  by 

a ( x ( y ,  t ) ,  t )  = g ( y )  for all t. (4.18) 

Equation (4.16) shows that S(x, t )  satisfies the quantum Hamilton-Jacobi equation 
(1.4). For CC, = a exp( iS /h)  to be a solution of the Schrodinger equation ( l . l ) ,  a and 
S must satisfy the continuity equation (1 .3)  which may be rewritten 

maa2+VS.  V a 2 =  U'V'S (4.19) 

or since S(x, t )  is harmonic in x 

(a(x(y, f), t ) ) ' = O  (4.20) 

using equations (4.17) and (1 .7 ) .  Clearly a(x, t ) ,  defined by equation (4.18), satisfies 
equation (4.20) for arbitrary g ( y ) .  
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I have no proof that a ‘harmonious’ or ‘cohesive’ state exists for a given potential 
in general, except where they are explicitly found for the particular cases in 9 2 and 
the less physically relevant classes given here and in 0 5. 

5. Self-dual states 

The plane wave states are self-dual 

$(x, r ) = e x p ( i k . x )  (5.1) 

in which the amplitude a (x ,  t )  being constant satisfies Laplace’s equation as does the 
phase. 

In two-dimensional space there are many more self-dual states. I f f ( x + i y )  is any 
analytic function of its complex argument and 

(5.2) 

then both a (x ,  y )  and S(x, y )  satisfy Laplace’s equation (1.6) in two dimensions. The 
lines of constant a (x ,  y )  and S(x,  y )  are everywhere perpendicular. Thus a (x ,  y )  is 
constant in the direction VS(x, y )  so the continuity equation (1.3) is satisfied by a (x ,  y )  
with 

f ( x  + iy)  = a(x ,  y )  +iS(x, y )  

S(x, y ,  t )  = S(x, y )  - Et. (5.3) 

This S(x,  y, t )  satisfies the classical Hamilton-Jacobi equation (1.4) for the time- 
independent potential 

V(x, y )  = E - (VS(x, y))*/2m. (5.4) 

We have, however, only found a particular energy eigenstate, namely that corresponding 
to eigenvalue E for this potential. 

Dual states in three dimensions can be found in  a similar manner using 

f ( z + i x c o s  T+iys in  ~ ) = a ( x , y , z ) + i S ( x , y , z )  (5.5) 

for some T. 

We now seek time-dependent dual states a(x,  t )  exp(iS(x, t ) / h ) .  
(1) I f  S(x, t )  is linear in x 

S ( x , t ) = m p ( t ) . x  (5.6) 

da(x,  r ) + p ( t ) . V a ( x ,  t ) = 0 .  ( 5 . 7 )  

then the continuity equation (1.3) becomes 

Therefore for /3 constant 

a ( x ,  t )  = a (  p - x - p  pr, 0) 

and the requirement that a(x,  t )  be harmonic in x for all t implies that a ( x ,  0) is linear 
in x. Therefore 

a (x, t ) = p - x - p pt. 
(2)  If VS(x, t )  is linear in x, then 

(5.9) 

VS(x, t ) = m p ( t ) x + m p ( t )  (5.10) 
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where x, p (  t )  and VS(x, t )  are n-column vectors. p (  t )  is an n x n matrix which must 
be traceless if S(x, I )  is to be harmonic. The continuity equation (1.3) becomes 

a ' (x ,  t ) + x T p ( t ) v a ( x ,  t ) + p ( t )  . ~ a ( x ,  t )  = o .  (5.11) 

I f  a ( x ,  t )  is linear in x, then 

V a ( x ,  1 )  = a( t )  (5.12) 

which is a function of t only and equation (5.11) becomes 

a'(?) + p (  t ) f f (  t )  = 0 

g ' ( t ) + a ( t )  - p ( t ) = O  

(5.13) 

(5.14) 

where 

a(x ,  t ) = a ( t )  . x + g ( t ) .  (5.15) 

(3) I f  the component of VS(x, t )  parallel to V a ( x ,  t )  is m k ( t ) V a ( x ,  1 )  then the 

a ' (x ,  t ) + k ( t ) l V a ( x ,  t ) / ' = o .  (5.16) 

continuity equation (1.3) becomes 

If a(x ,  t )  is linear, equation (5 .15) ,  this becomes 

g'( t )  + k (  t )a(r )  - a( t )  = 0 (5.17) 

a'( t )  = 0. (5.18) 

(4) There are some dual states among those given by equation (4.2) when b( t )  = 0 

v'[/( r ) (  p x)'+ m ( t ) (  y -  x)'] = 0. (5.19) 

and p, y, I (  1 )  and m( t )  are chosen so that 

(5) We also have the special dual states 

a(x ,  t )  = (Y x + a (  t )  exp(a  - x)  sin( p -  x + #J) 

S(x, r )  = p - x + p ( t )  e x p ( a  x)  cos( p - x +  4 )  
where 

cy * p = (Y * ff - p  * p = 0. 

(5.20) 

(5.21) 

(5.22) 

6. Approximate method for finding 'harmonious' states 

A general variation of the wavefunction 

+(x, t )  = a(x,  t )  exp(iS(x, t ) / h )  (6.1) 
in the action functional 

I =  [ t i h ( ~ ' d ~ - a + ' J / ) - t h ' V ~ ' . V + / m -  V+'+]d"xdt (6.2) 

gives the Schrodinger equation (1.1) as its exact Euler-Lagrange equation. The exact 
solutions of the Schrodinger equation (1.1) which extremise I will not for general 
potentials be 'harmonious' states. Our approximation will be to extremise I over the 

I 
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restricted set of wavefunctions (6.1) for which S ( x ,  r )  satisfies the classical Hamilton- 
Jacobi equation (1.9). Since 

61 =; SS[da‘+V ( a * V S ) / m ]  d”x d t  

-1 S a { a [ d S - i ( V S ) ’ / m +  V I - h ’ V * a } d ” x  d t  (6.3) 

the independent variation of a ( x ,  t )  is extremised by any harmonic function a ( x ,  t ) ,  
since the square bracket in (6.3) is zero by hypothesis. 

The restriction of the set of functions S(x, t )  contained in L z ( R n r ’ )  over which I 
is to be extremised is given in terms of an arbitrary function P ( y )  contained in L’(R“) 
as follows: 

S ( X ,  r ) = ( S n ( x , ~ ,  r ) + P ( ~ ) ) y = y , x . t i  (6.4) 

1 

where y (x, t )  is the solution of the n algebraic equations 

[Sn(x, Y,  f 1 + P (Y 1 1  = 0 (6.5) 

where 3 ,  is the partial derivative with respect to y ,  and So(x ,  y ,  t )  is a complete integral 
of the classical Hamilton-Jacobi equation (1.9). Incidentally y ( x ,  t )  is the inverse, for 
each t ,  of x ( y ,  t )  the ‘coherent’ set of classical paths (Synge and Griffith 1970): 

Y ( X ( Y ,  t ) ,  1) = y  for all t. (6.6) 

S(x, t )  is a solution of equation (1.9) for any arbitrary function P ( y )  since using 
equations (6.4) and (6.5) 

( V  has components V ,  the partial derivative with respect to x,  distinguished from a ,  
the partial derivative with respect to y , ,  here and later). Indeed S(x, t )  is the general 
solution of the classical Hamilton-Jacobi equation (1.9). The variation in S ( x ,  t )  
consequent on a variation of the arbitrary function p ( y )  is 

aS(x, t )  = (Sn (x, Y, 1 )  + P (1’1 + SP ( Y ) ) ,  =, ix,t ) + A J  - ( Si(x, Y, t )  + P (Y 11, :, i x , t  (6.9) 
where y ( x ,  t )  + Sy(x, t )  is the solution of 

3 ,  ( S d X ,  Y, t )  + P (Y 1 + SP ( y  1) = 0. (6.10) 

Therefore using equation (6.5) 

SS(X, t )  = SP(Y(X, 0 )  (6.11) 

to lowest order in small quantities. Thus for any given harmonic a ( x ,  t )  

S I  = S P ( y ( x ,  t ) ) [ a a ’ + V  ( a * V S ) / m ]  d”x d t  (6.12) 

=I W ( y ) [ a a ‘ + V  * ( a z v S ) / m l , = , , , . , , J ( y ,  t )  d”y dr  (6.13) 

where J ( y ,  t )  is the Jacobian of the transformation x ( y ,  t )  from x to y 

J ( Y ,  t )  = la,x,l. (6.14) 
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(6.16) 

where we have used 

mx'(y,  t ,  = (vS(x, t ) ) r = x ( y , t J  (6.17) 

from which it follows that 

m [ l n  J ( Y ,  [ I ] '=  [V2S(x, t ) Ix=x lp , t l .  (6.18) 

In deriving equation (6.18) from (6.17) we have used the fact that 

a In det A( t )  = tr A - ' (  t )  aA( t )  (6.19) 

for a matrix A( t )  with elements AOk, and have taken Alk to be d,x,  so that its determinant, 
equation (6.14), is J ( y ,  t )  and 

aA,k = ddkx, = a k x :  = a,x,O,O,S/m (6.20) 

using equation (6.17). 
Equation (6.17) requires proof. Since x ( y ,  t )  is the solution of equation (6.5), then 

(a,s,(x,y, t ) ) y = r ( j , , J  = ~ , P ( Y )  (6.21) 

is independent of t and therefore 

o = a a , p ( Y )  (6.22) 

= a[(a,S,(x, Y,  t))x=x,y.,,l (6.23) 

= x'(p, t ,  [(va,sO(x, y ,  f ) ) x = x ( > , , J ]  + Y ,  ) ) x = x ( y . f  J ] .  (6.24) 

However, differentiating the classical Hamilton-Jacobi equation (1.9) with respect to 
y ,  gives 

maa,S,,(x,y,  t ) + V S , , ( x , y ,  t )  - V a , S , ( x , y ,  r ) = O  (6.25) 

so equation (6.24) becomes 

[ v a S ~ ( x ,  Y,  t ) lx=x,y . , l  . ( m x ' ( y ,  t )  - [VSdx, Y,  ~)lx=xly,,l) = 0 (6.26) 

and this system of n algebraic equations or n x n matrix equation has the unique solution 

mx' (y ,  =[vS"(x?y, t l X = X ( J ~ , f J  (6.27) 

using equation (6.6), if the determinant of its matrix is non-zero. A zero value for the 
determinant of the matrix VdSo would imply that not all of the momenta V,S, could 
be varied independently, contrary to the hypothesis that S ,  is a complete integral of 
the classical Hamilton-Jacobi equation (1.9). Equation (6.17) follows from equation 
(6.27) using equation (6.7). 

Equation (6.16) means that for all y the 'shooting' equation 

a 2 ( x ( y ,  +CO), + a ) J ( y ,  +a) = a 2 ( x ( y ,  -a), - w ) J ( y ,  -w) (6.28) 
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must be satisfied by S(x, I )  which is related to J by equation (6.18). We have shown 
that the wavefunction equation (6.1) with S(x, I )  restricted to satisfy the classical 
Hamilton-Jacobi equation (1.9) minimises, subject to that restriction, the action func- 
tional I equation (6.2) iff a ( x ,  t )  is harmonic for all t and S(x, I )  satisfies equation (6.28). 

I f  we take the action I as the natural measure of the error in any approximate 
solution of the Schrodinger equation, the W K B  method which puts no restriction on 
which solution of the classical Hamilton-Jacobi equation is to be used as phase, is 
improved upon here where we chose precisely that solution which serves to minimise 
the error I. As the price for this improved accuracy only ‘harmonious’ state solutions 
may be found even though a given system may not possess such states. However, the 
W K B  method will itself be inaccurate if the state is not approximately ‘harmonious’. 

I f  we were to lift the restriction and permit a general phase and amplitude, even 
lower values of I could be obtained by letting 

a ’ ( x ( y ,  11, t)J(y, 1 )  = a ’ ( x ( y ,  -a), -w)J(y, -E) (6.29) 

for all y and I, and letting S(x, I )  satisfy the quantum Hamilton-Jacobi equation (1.4). 
These are coupled equations for S(x, I )  and a ( x ,  t )  equivalent to the exact Schrodinger 
equation ( l . l ) ,  since using equation (6.18) we see that equation (6.29) is another way 
of writing the continuity equation (1.3). 

Though the wavefunction may belong to the set of harmonious states at f = 0 the 
true quantum-mechanical time development will in general take it outside this set. 
Thus S(x, I )  satisfying the classical Hamilton-Jacobi equation (1.9) and the shooting 
equation (6.28) for harmonic a ( x ,  I )  does not in general give exact solutions of the 
Schrodinger equation ( 1  . l )  via equation (1.2). 

The approximate time-dependent harmonious state for an arbitrary harmonic func- 
tion a ( x ,  t )  is the exact solution of a variational problem: the minimisation of I subject 
to the restriction mentioned above. However, this variational problem is equivalent 
to a set of ordinary differential equations: the classical equations of motion 

[V, L ] ’ - V L  = 0 (6.30) 

where V, is the derivative with respect to x’ and L ( x ,  x’) is the Lagrangian of the system 

L ( x , x ’ ) = i m x ’ - x ’ -  ~ ( x ) .  (6.31) 

The solutions x(y, I )  for each y in R “  form a coherent (Synge and Griffiths 1970) set 
of natural motions. The S(x, I )  to which these are related by equation (6.17) is then 
given by 

S ( X ( Y ,  t), t )  = U x b ,  11, x ’ b ,  1)) dt. (6.32) 

The Jacobian J ( y ,  1 )  may be derived from x ( y ,  I )  using equation (6.14). The initial and 
final ( t  = +a) conditions imposed to determine the solution are 

X ( Y ,  0 )  = Y (6.33) 

and equation (6.28). For scattering problems, where information is given about the 
time-dependent states at t = *a, over a large region in x, this can be an advantage 
over the W K B  method which imposes a condition on both the initial position and 
momentum of the classical path. 

The solution of the classical equations of motion subject to the initial condition 
(6.33) and the shooting condition (6.29) is found numerically by the ‘shooting’ method, 

I‘ 
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as follows. Let the R“ coordinate and  momentum spaces be replaced by a grid of 
physically close points y and U respectively. We take our grid spacing to be our unit 
although it represents physically very small distances. Let x(y ,  U, t )  be the solution of 
the classical equations of motion with initial conditions 

(6.34) 

(6.35) 

and the components of the matrix A ( y ,  U, t )  be given by 

(Y9 ‘1 = ‘1 ( y  + e J )  - xt ( y )  (6.36) 

where x, is the i component of x and y + e, is the grid point adjacent to y in the positive 
i direction. 

For general U the quantity 

W Y ,  U )  = a(x(u, U, +a), +a) det A(Y,  0, +a) 
- a ( x ( y ,  U, -a), -a) det A ( y ,  U, -00) (6.37) 

will not be zero as required by equation (6.28). The Newton-Raphson method replaces 
U by u + 2  e,&, which makes F ( y ,  u + Z  e,&,) closer to zero if E ,  are the solutions of the 
linear equations 

(6.38) c F, (Y, U)&, = - F ( Y ,  U )  

where 

F, (Y, U )  = F(y ,  U + e,) - F(y ,  0). (6.39) 

The repeated iteration required to find a U which zeros F(y ,  U )  for each y makes this 
method more involved than the W K B  method. 

If the method is applied to the harmonic oscillator potential we find exact ‘har- 
monious’ states: 

+(x, y ,  t )  = (6.40) 

for every value of the variational parameters y .  
I have not found numerically an exact ‘harmonious’ state for any other physically 

relevant system. The solutions to equation (6.29) for t = +a which we find are indeed 
‘harmonious’ states, and  moreover are the ‘harmonious’ states which give the least 
error I .  However, to give an exact solution of the Schrodinger equation, equation 
(6.29) would have to be satisfied for all t not just at t = +CO. The task may be more 
successfully pursued by those with access to even a few ‘transputers’. A single ‘trans- 
puter’ can operate for a given y, U without communication to solve the ordinary 
differential equations and establish x(y ,  U, *CO). The result from the ‘transputers’ 
labelled (y ,  U), ( y  + el, U), (y ,  u t -  e,) and ( y  + eJ, U + e,) are communicated to the system 
which is to solve equation (6.38). 

wt exp{t m w [ ( x 2 + y Z )  cos wt - 2x * y ] /  f i  sin or} 

7. Approximate method for finding ‘harmonious’ energy eigenstates 

These $(x) = a ( x )  exp( iS(x) /h)  must be energy eigenstates corresponding to con- 
tinuous eigenvalues. For 

[ +’+ d”x = [ a ’ (x )  d”x (7 .1)  
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is supposed finite for discrete eigenvalues and  infinite (Dirac S function) for continuous 
eigenvalues. But if finite, a ( x )  must be zero at large distances. But the only solution 
of Laplace's equation which is zero at large distances is 

a ( x )  = 0. (7 .2)  

[ ih2V$'(x)  . V $ ( x ) / m + ( V ( x ) - E ) $ ' $ ] d " x  (7 .3 )  

The argument which shows that $(x) minimises the action functional 

over arbitrary a ( x )  and S(x) restricted to satisfy 

+ ( V S ( x ) ) ' / m  = ( V ( x )  - E )  (7 .4 )  

provided a ( x )  is harmonic and a 2 ( x ( y ,  *a) J (y ,  *a) are equal, is exactly the same 
as that of B 6 with S(x, t ) ,  a ( x ,  t ) ,  P ( y ) ,  S, , (x,y,  t )  and x ( y ,  t )  replaced by S(x),  a ( x ) ,  
P ( y ) ,  So(x, y ,  E )  and x ( y ,  T )  and J operating on anything replaced by multiplication 
by zero. Having made such replacements we shall distinguish the equation numbers 
with a prime '. S,(x, y, E )  in terms of n - 1 arbitrary constants y is the complete integral 
of equation (7 .4 )  up to the additive constant. That x ( y ,  T ) ,  the solution of the n - 1 
algebraic equations (6 .5 ' ) ,  satisfies 

(7 .5 )  m x ' b ,  7 )  = [vS(x)l,=,, , - ,  
does, however, require a separate proof as follows. 

Since x ( y ,  T )  is the solution of equation (6.5'1, then 

[a,Sii(x, Y ,  7 ) I x - x i i . r i  = J,P(!) (7 .6 )  

is independent of T and therefore differentiating with respect to T (indicated by J in 
this section) yields 

(7 .7 )  

= a([a,So(x, Y ,  E)I,- , ,  , -,) ( 7 . 8 )  

= X ' ( Y ,  7 )  ( W J , S O ( X ,  Y ,  E)l , - , , , , , i ) .  (7.9) 

0 = aa,p ( y  1 

This system of n - 1 algebraic equations or ( n  - 1 )  x n matrix equation determines the 
ratios of the n unknowns x ' ( y ,  7 )  for non-zero determinant IC,d,S,,I where i runs over 
any n - 1 of the n possible indices a n d j  runs over 1 to n - 1. If  any of these determinants 
were zero this would imply that n - 1 of the momenta VS,(x) could not be varied 
independently contrary to the hypothesis that S,, is a complete integral. Now 
[VS,,(x, y ,  E)],,, , , ,-,  satisfies the same n - 1 equations as x ' ( y ,  T )  as may be seen by 
differentiating the classical Hamilton-Jacobi equation (7 .4 )  with respect to y ,  to give 

(7 .10 )  

(7 .11)  

(7 .12 )  

andf(y,  7 )  is the proportionality factor. Since  is an arbitrary parameter parametrising 
each of the paths x ( y ,  T )  it  may be changed to any function of T on each path. Let 
us therefore choose the parameter T for each path so that 

4 mx'(y,  T )  x ' ( y ,  T )  - V ( x ,  y ,  T )  = E (7 .13)  
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thenf(y,  T )  is determined by equations (7.13), (7.4) and (7.12) to be m and therefore 
equation ( 7 . 5 )  follows from equation (7.12). 

The harmonic oscillator is an inappropriate example to use in this case as all its 
energy eigenvalues are discrete. Indeed these states in the Schrodinger representation, 
far from being harmonic have, for the lowest-energy state, for example, 

(7.14) 

which gives h 2 ( V 2 a ) / m a  equal to V(x) (equation (1.10)), rather than negligible 
compared to V(x), in equation (1.4) thus allowing the VS term to be zero as it should 
be since the phase of the lowest-energy eigenfunction is constant. 

The hyperbolic paths of the Coloumb potential together with an a ( x )  independent 
of x d o  furnish an  example where the positive energy states are approximated by 
$(x) = a exp( iS(x) /h)  

a (x)  = exp( - 4 MWX x/ h ) 

S(X(Y, t ) )  = I‘ U x ( y ,  71, x’(Y, 7 ) )  d 7  (7 .15 )  

where L ( x ,  x‘) is the Lagrangian for the Coulomb potential. 

8. Conclusions 

The dual constructs ‘harmonious’ and ‘cohesive’ states discussed in this paper are of 
interest in their own right if they may be realised even approximately for a dynamical 
system. The ‘harmonious’ probability distributions have no lumps and require no 
quantum potential V, (equation ( 1 . 5 ) )  for their classical description. A lump in a 
‘cohesive’ probability distribution, however, sticks together even when classical forces 
tend to pull it apart. These concepts readily generalise. The probability density of a 
generalised harmonious state for which a (x ,  1 )  satisfies the Helmholtz equation 

V ? a ( x ,  1 )  = 2mk7 t)a(x,  t ) /  h 2  ( 8 . 1 )  

has wavelike lumps but no soliton lumps. The probability density of a generalised 
cohesive state which has 

V’S(X, t )  = 2 m ~ ’ ( t )  (8.2) 

is scaled by exp( -2mF( t ) )  but keeps its shape as we move along the quantum path. 
‘Harmonious’ states can be found approximately corresponding to each a(x, t )  

harmonic in x for all t ,  by solving by ‘shooting’ methods, the classical equations of 
motion with conditions (6.28) and (6.33). These minimise the quantum action func- 
tional I equation (6.2) with respect to variations over wavefunctions whose phase 
satisfies the classical Hamilton-Jacobi equation (1.9). If +(x, y ,  t )  are an n-parameter 
family of ‘harmonious’ states corresponding to the family of harmonic functions 
a(x, y ,  t ) ,  the family of phases S(x, y ,  t )  constitute a complete integral of the classical 
Hamilton-Jacobi equation (1.9). 

The limit $ ( x , y ,  0) of $ ( x , y ,  t )  as t approaches zero gives a distribution which 
when convoluted with C“ functions spans our space of initial states. The time evolution 
of these initial states will be the C“ function convoluted with $(x, y ,  r ) .  

‘Cohesive’ states of the harmonic oscillator are minimal uncertainty coherent states 
which are over-complete and  although not orthogonal may be used as any other 
representation in quantum mechanics. ‘Cohesive’ states for general potentials which 
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are not like the harmonic oscillator (Nieto 1983) are not easily approximated. The 
variation of I with respect to wavefunctions in two dimensions with a phase 

S = C * ( Y , ( t )  *S,(X) (8.3) 

where *S,(x) are the two harmonics which are homogeneous of degree n, leads to the 
quantum Hamilton-Jacobi equation (1.4) together with the infinite set of equations 

11 {da2+V e (a2VS)} *S,(X) d 2 x = 0  

which do  not provide a useful alternative approximation procedure. 

(8.4) 
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